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Abstract
At low energies, electrons in doped graphene sheets are described by a
massless Dirac fermion Hamiltonian. In this work, we present a semi-analytical
expression for the dynamical density–density linear-response function of non-
interacting massless Dirac fermions (the so-called ‘Lindhard’ function) at finite
temperature. This result is crucial to describe finite-temperature screening of
interacting massless Dirac fermions within the random phase approximation. In
particular, we use it to make quantitative predictions for the specific heat and the
compressibility of doped graphene sheets. We find that, at low temperatures, the
specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior,
with a slope that is solely controlled by the renormalized quasiparticle velocity.

PACS numbers: 71.10.−w, 71.45.Gm, 72.10.−d

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene is a newly realized two-dimensional (2D) electron system that has attracted a
great deal of interest in the scientific community because of the new physics which it
exhibits and because of its potential as a new material for electronic technology [1, 2].
The agent responsible for many of the interesting electronic properties of graphene sheets is
the non-Bravais honeycomb-lattice arrangement of carbon atoms, which leads to a gapless
semiconductor with valence and conduction π -bands. States near the Fermi energy of a
graphene sheet are described by a spin-independent massless Dirac Hamiltonian [3],

HD = vF σ ·p, (1)
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where vF is the Fermi velocity, which is density independent and roughly 300 times smaller
than the velocity of light in the vacuum and σ = (σ x, σ y) is a vector constructed with two
Pauli matrices {σ i, i = x, y}, which operate on pseudospin (sublattice) degrees of freedom.
Note that the eigenstates of HD have a definite chirality rather than a definite pseudospin,
i.e., they have a definite projection of the honeycomb-sublattice pseudospin onto the
momentum p.

When non-relativistic Coulombic electron–electron interactions are added to the kinetic
Hamiltonian (1), graphene represents a new type of many-electron problem, distinct from
both an ordinary 2D electron gas (EG) and quantum electrodynamics. The Dirac-like wave
equation and the chirality of its eigenstates lead indeed to both unusual electron–electron
interaction effects [4–8] and unusual response to external potentials [9–11]. For example,
Friedel oscillations in the charge density around an impurity show a faster decay [δn(r) ∼ r−3]
than in a conventional 2D EG [9].

Within this low-energy description, the properties of doped graphene sheets depend on
the dimensionless coupling constant

αgr = g
e2

εh̄vF
(2)

and on an ultraviolet cut-off � = kc/kF. Here g = gsgv = 4 accounts for spin and valley
degeneracy, kF = (4πn/g)1/2 is the Fermi wave number with n being the electron density and
kc should be assigned a value corresponding to the wavevector range over which the continuum
model (1) describes graphene. For definiteness, we take kc to be such that πk2

c = (2π)2/A0,
where A0 = 3

√
3a2

0

/
2 is the area of the unit cell in the honeycomb lattice, with a0 � 1.42 Å

the carbon–carbon distance. With this choice

� =
√

g√
nA0

. (3)

The continuum model is useful when kc � kF, i.e. when � � 1.
Vafek [12] has recently shown that the specific heat of undoped graphene sheets presents

an anomalous low-temperature behavior showing a logarithmic suppression with respect to
its non-interacting counterpart, limT →0 CV

/
C

(0)
V ∝ 1/ ln(T ). On the other hand, in [6, 7]

we have demonstrated (see also [8]) that doped graphene sheets are normal (pseudochiral)
Fermi liquids, with Landau parameters that possess, however, a quite distinct behavior from
those of conventional 2D EGs. In this work, we calculate the Helmholtz free energy F(T ) of
doped graphene sheets within the random phase approximation (RPA) [13, 14]. This allows
us to access important thermodynamic quantities, such as the compressibility and the specific
heat, which can be calculated by taking appropriate derivatives of the free energy. We show
that, at low temperatures, the specific heat of doped graphene, contrary to that of the undoped
system [12], has the usual linear-in-temperature behavior, which is solely controlled by the
renormalized velocity of quasiparticles as in a normal Fermi liquid.

2. The Helmoltz free energy and the Lindhard response function at finite temperature

The free energy F = F0 + Fint is usually decomposed into the sum of a non-interacting term
F0 and an interaction contribution Fint. To evaluate the interaction contribution to the
Helmholtz free energy we follow a familiar strategy [14] by combining a coupling constant
integration expression for Fint valid for uniform continuum models (h̄ = 1 from now on),

Fint(T ) = N

2

∫ 1

0
dλ

∫
d2q

(2π)2
vq[S(λ)(q, T ) − 1] (4)

2
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with a fluctuation–dissipation-theorem (FDT) expression [14] for the static structure factor:

S(λ)(q, T ) = − 1

πn

∫ +∞

0
dω coth (βω/2)Im χ(λ)

ρρ (q, ω, T ). (5)

Here vq = 2πe2/(εq) is the 2D Fourier transform of the Coulomb potential and β = (kBT )−1.
We anticipate that this version of the FDT (in which the frequency integration has to be
performed over the real-frequency axis) requires care in handling the plasmon contribution to
Fint(T ) (see the discussion below).

The RPA approximation for Fint then follows from the RPA approximation for χ(λ)
ρρ (q, ω),

χ(λ)
ρρ (q, ω, T ) = χ(0)(q, ω, T )

1 − λvqχ(0)(q, ω, T )
, (6)

where χ(0)(q, ω, T ) is the non-interacting density–density response function:

χ(0)(q, ω, T ) = g lim
η→0+

∑
s,s ′=±

∫
d2k

(2π)2

1 + ss ′ cos(θk,k+q)

2

nF(εk,s) − nF(εk+q,s ′)

ω + εk,s − εk+q,s ′ + iη
. (7)

Here εk,s = svFk are the Dirac band energies and nF(ε) = {exp[β(ε −μ0)] + 1}−1 is the usual
Fermi–Dirac distribution function, μ0 = μ0(T ) being the non-interacting chemical potential.
As usual, this is determined by the normalization condition

n =
∫ +∞

−∞
dεν(ε)nF(ε), (8)

where ν(ε) = gε
/(

2πv2
F

)
is the non-interacting density of states. For T → 0 one finds

μ0(T ) = εF − π2(T /TF)
2/6, where TF = εF/kB is the Fermi temperature. The factor in the

first line of equation (7), which depends on the angle θk,k+q between k and k + q, describes
the dependence of Coulomb scattering on the relative chirality ss ′ of the interacting electrons.

After some straightforward algebraic manipulations, we arrive at the following expressions
for the imaginary [Im χ(0)(q, ω, T )] and real [Re χ(0)(q, ω, T )] parts of the non-interacting
density–density response function for ω > 0:

Im χ(0)(q, ω, T ) = g

4π

∑
α=±

{
�(vFq − ω)q2f (vFq, ω)

[
G(α)

+ (q, ω, T ) − G
(α)
− (q, ω, T )

]
+ �(ω − vFq)q2f (ω, vFq)

[
−π

2
δα,− + H(α)

+ (q, ω, T )
]}

(9)

and

Re χ(0)(q, ω, T ) = g

4π

∑
α=±

{−2kBT ln[1 + eαμ0/(kBT )]

v2
F

+ �(ω − vFq)

× q2f (ω, vFq)
[
G

(α)
− (q, ω, T ) − G(α)

+ (q, ω, T )
]

+ �(vFq − ω)q2f (vFq, ω)
[
−π

2
δα,− + H

(α)
− (q, ω, T )

]}
. (10)

Here

f (x, y) = 1

2
√

x2 − y2
, (11)

G
(α)
± (q, ω, T ) =

∫ ∞

1
du

√
u2 − 1

exp
( |vFqu±ω|−2αμ0

2kBT

)
+ 1

(12)
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Figure 1. The static response function Re χ(0)(q, 0, T ) (in units of −ν(εF)) as a function of q/kF
for three values of 0 � T/TF � 1. Note the non-monotonic behavior of this quantity for q � kF.

and

H
(α)
± (q, ω, T ) =

∫ 1

−1
du

√
1 − u2

exp
( |vFqu±ω|−2αμ0

2kBT

)
+ 1

. (13)

These semi-analytical expressions for Re χ(0)(q, ω, T ) and Im χ(0)(q, ω, T ) constitute the
first important result of this work. In the limit T → 0, it is possible to show that equations (9)
and (10) reduce to the well-known zero-temperature results [15]. In figure 1, we have plotted
the static response, Re χ(0)(q, 0, T ), as a function of q/kF for different values of T/TF. The
non-monotonic behavior of Re χ(0)(q, 0, T ) originates from a competition between intra- and
inter-band contributions to this quantity. For every fixed q indeed, the intra-band contribution
decreases rapidly with increasing T, while the inter-band contribution increases quickly at
small T and then more slowly (in an essentially linear fashion) at large T. The competition
between the intra- and inter-band contributions to ∂[Re χ(0)(q, 0, T )]/∂T for T 
 T cross

q
5

is responsible for the non-monotonic behavior of Re χ(0)(q, 0, T ) illustrated in figure 1.6 A
study of the temperature-dependence of the static non-interacting density–density response
function that reaches identical conclusions has appeared recently in the literature [16]. The
temperature dependence of the Lindhard function at a finite frequency is instead presented
in figure 2. An illustrative plot of the imaginary part of the inverse RPA dielectric function
ε(q, ω, T ) = 1 − vqχ

(0)(q, ω, T ) is shown in figure 3.
The coupling constant integration in equation (4) can be carried out partly analytically

due to the simple RPA expression (6). We find that the interaction contribution to the free
energy per particle fint(T ) is given by

fint(T ) ≡ Fint(T )

N
= 1

2

∫
d2q

(2π)2

{
− 1

πn

∫ +∞

0
dω coth (βω/2)

× arctan

[
vq Im χ(0)(q, ω, T )

1 − vq Re χ(0)(q, ω, T )

]
− vq

}
5 Here T cross

q is a q-dependent temperature scale at which intra- and inter-band contributions to Re χ(0)(q, 0, T ) are
equal.
6 For T � T cross

q the inter-band contribution is much larger than the intra-band one. However, ∂[Re χ
(0)
intra(q,

0, T )]/∂T is negative and large in absolute value and dominates over ∂[Re χ
(0)
inter(q, 0, T )]/∂T , establishing eventually

the usual monotonic behavior characteristic of the conventional 2D EG.

4
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Figure 2. Left panel: the real part of the dynamical response function Re χ(0)(q, ω, T ) (in units
of −ν(εF)) as a function of q/kF for ω = 2εF and three values of 0 � T/TF � 1. Right panel:
same as in the left panel but for the imaginary part.

Figure 3. Left panel: Im [ε−1(q, ω, T )] as a function of q/kF and ω/εF for αgr = 2 and T = 0.
The red solid line is the plasmon dispersion relation. Right panel: same as in the left panel but for
T = 0.2TF (corresponding roughly to room temperature).

+
1

2n

∫
d2q

(2π)2

∫ 1

0

dλ

λ
coth (βωpl/2)Re χ(0)(q, ωpl, T )

×
∣∣∣∣∂[Re χ(0)(q, ω, T )]

∂ω

∣∣∣∣
−1

ω=ωpl

. (14)

In this equation, the first term comes from the smooth electron–hole contribution to Im χ(λ)
ρρ ,

while the second term comes from the plasmon contribution; ωpl = ωpl(q, T , λ) is the plasmon
dispersion relation at the coupling constant λ which can be found numerically by solving the
equation 1−λvq Re χ(0)(q, ω, T ) = 0. Note that in a usual 2D EG, the exchange energy starts
to matter little for T of order TF because all the occupation numbers are small and the Pauli
exclusion principle matters little. In the graphene case, however, exchange interactions with
the negative energy sea remain important as long as T is small compared to vFkc/kB = TF�.

5
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Figure 4. Left panel: the (regularized) interaction contribution to the free energy δfint(T ) (in units
of the Fermi energy εF) as a function of T/TF for � = 102. Right panel: the specific heat CV (T )

(in units of kB) as a function of T/TF.

The free energy calculated according to equation (14) is divergent since it includes the
interaction energy of the model’s infinite sea of negative energy particles. Following Vafek
[12], we choose the free energy at T = 0, f (T = 0), as our ‘reference’ free energy, and thus
introduce the regularized quantity δf ≡ f (T ) − f (T = 0). This again can be decomposed
into the sum of a non-interacting contribution, δf0(T → 0) = −gεFπ

2(T /TF)
2/12, and an

interaction-induced contribution δfint(T ) = fint(T ) − fint(T = 0), which can be calculated
from equation (14). Numerical results for δfint(T ) as a function of the reduced temperature
T/TF are shown in the left panel of figure 4.

The low-temperature behavior of the interaction contribution to the free energy can be
extracted analytically with some patience. After some lengthy but straightforward algebra we
find, to leading order in �,

δfint(T → 0) = εF
π2

3

(
T

TF

)2
αgr[1 − αgrξ(αgr)]

4g
ln � + R.T., (15)

where the function ξ(x), defined as in equation (14) of [6], is given by ξ(x) = 128/(π2x3) −
32/(π2x2) + 1/x − h(πx/8) with

h(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2x3
√

1 − x2
arctan

(√
1 − x2

x

)
for x < 1

1

4x3
√

x2 − 1
ln

(
x +

√
x2 − 1

x − √
x2 − 1

)
for x > 1.

(16)

The symbol ‘R.T.’ in the lfs of equation (15) indicates ‘regular terms’, i.e. terms that, by
definition, are finite in the limit � → ∞. Equation (15) represents the second important result
of this work.

Before concluding this section, we remind the reader that in [6] it has been proven that
the renormalized RPA quasiparticle velocity v� is given, at weak coupling and to leading order
in �, by

v�

vF
= 1 +

αgr[1 − αgrξ(αgr)]

4g
ln �. (17)

6
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Figure 5. The dimensionless ratio κ(T )/κ0(T ) as a function of graphene’s coupling constant αgr
for three values of 0 � T/TF � 0.2.

3. The specific heat and the compressibility

The specific heat can be calculated from the second derivative of the Helmholtz free energy,
CV = −T ∂2[nδf (T )]/∂T 2.7 Numerical results for CV (T ) as a function of temperature are
shown in figure 4. We thus see that δfint(T → 0) ∝ T 2 in equation (15) implies a conventional
Fermi-liquid behavior with a linear-in-T specific heat. Moreover, comparing equation (15)
with equation (17) we find that the ratio between CV and its non-interacting value C

(0)
V is given

by

lim
T →0

CV

C
(0)
V

= vF

v�
, (18)

a well-known property of normal Fermi liquids [13, 14]. We are thus led to conclude, in
full agreement with the zero-temperature calculations of the quasiparticle energy and lifetime
performed in [6, 7], that doped graphene sheets are normal Fermi liquids. Note that the fact
that interactions enhance the quasiparticle velocity (see equation (17)) implies that the specific
heat of doped graphene sheets is suppressed with respect to its non-interacting value.

The compressibility can be calculated from the following equation:

1

n2κ(T )
= 1

n2κ0(T )
+

∂2[nδfint(T )]

∂n2
, (19)

where κ−1
0 (T ) is the inverse compressibility of the non-interacting system at finite temperature.

In the low-temperature limit 1/[n2κ0(T → 0)] = nεF/2 + gnεFπ
2(T /TF)

2/48. The
dependence of the ratio κ(T )/κ0(T ) on αgr and T/TF is shown in figure 5.

4. Conclusions

In this work, we have presented semi-analytical expressions for the real and imaginary parts
of the density–density linear-response function of non-interacting massless Dirac fermions at
finite temperature. These results are very useful to study finite-temperature screening within

7 The second derivative is calculated using the full temperature dependent free-energy of the non-interacting system,
δf0(T ), and not its analytical expression reported above that is valid only for T 
 TF.
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the random phase approximation. For example, they can be used to calculate the conductivity
at finite temperature within Boltzmann transport theory and make quantitative comparison
with recent experimental results in unsuspended [17, 18] and suspended graphene sheets
[19, 20] (see also comments in [9, 16]).

The Lindhard function at finite temperature is also extremely useful to calculate finite-
temperature equilibrium properties of interacting massless Dirac fermions, such as the specific
heat and the compressibility. For example, in this work we have been able to show that, at
low temperatures, the specific heat of interacting massless Dirac fermions has the usual
normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by
the renormalized quasiparticle velocity.
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